30.04.2023 г., 0:12  

Отговор на Открийте тайната

479 2 1
2 мин за четене

В материала си "Открийте тайната", качен в сайт Откровения на линк:

 

https://otkrovenia.com/bg/proza/otkrijte-tajnata

 

ви поставих една любопитна задача, която си поставих сам. По-долу може да проследите едно нейно решение, намерено от мен.

 

Решение:

 

Нека цялото положително число k е такова, че за всяко цяло положително число n сборът от k-тите степени на числата от 1 до n /включително/ е квадрат на цяло число. Тогава и сборът 1^k + 2^k също трябва да е квадрат на цяло число. Да го означим с x. Значи имаме: x^2 = 1^k + 2^k. Откъдето:

 

x^2 - 1 = 2^k. Оттук получаваме:

 

(x - 1)(x + 1) = 2^k

 

От последното равенства следва, че имаме:

 

x + 1 = 2^a

 

x - 1 = 2^b

 

за някакви цели положителни числа a и b, за които е в сила: a > b и a + b = k.

Оттук намираме:

 

b = k - a.

 

Следователно:

 

x = 2^a - 1

 

x = 2^(k - a) + 1.

 

Откъдето:

 

2^a - 1 = 2^(k -a) + 1.

 

От последното равенство намираме:

 

2^a - 2^(k - a) = 2.

 

Съкращаваме на 2 двете страни на последното равенство и достигаме до равенството:

 

(*)                2^(a - 1) - 2^(k - a - 1) = 1.

 

Да анализираме това последно равенство. В дясната му страна стои числото 1, което е нечетно. Следователно това равенство може да съществува само ако е в сила:

 

k - a - 1 = 0.

 

Оттук намираме: a = k - 1. Заместваме това в (*) и намираме:

 

2^(k-2) - 1 = 1.

 

Така получаваме: 2^(k -2) = 2.

 

Сега разделяме на 2 двете страни на последното равенство и намираме равенството:

 

2^(k - 3) = 1.

 

Последното е възможно само ако k - 3 = 0. Откъдето: k = 3.

 

Така доказахме, че ако цялото положително число k е такова, че за всяко цяло положително число n сборът от k-тите степени на числата от 1 до n /включително/ е квадрат на цяло число, то k = 3.

 

Обратно, нека k = 3. Тогава за всяко цяло положително число n е в сила добре известното равенство:

 

1^3 + 2^3 + 3^3 + ...+ n^3 = (1 + 2 + 3 + ...+ n)^2

 

и с това задачата е напълно решена.

 

 

Искате да прочетете повече?

Присъединете се към нашата общност, за да получите пълен достъп до всички произведения и функции.

© Младен Мисана Всички права запазени

Коментари

Коментари

  • Благодаря, Младене! Чудесни са главоблъсканиците, които ни представяш - гимнастика за мозъка! И в математиката има “съзвучия“, „поетични закономерности“ и „рими“... Усмихнат ден пожелавам!

Избор на редактора

Питаш ме коя съм?

РосиДимова

Здравей, моя виртуална приятелко! Питаш ме коя съм? Отдавна се опитвам да си отговоря на този въпрос...

Забрадката на Йозге

Katriona

Пламен Камъка похлопа на вратата на съседите си в нощта срещу 15 юни. Брат му и снаха му заминаха сл...

С нами Бог

Ivita_Mirianova

„Връщане назадъ нѣма!” Ген. Георги Вазов Времето замря в кървавите отблясъци на залеза. Светлините н...

Греховете на Фатима

Boyan

Фатима легна да умира във вторник по обяд. В къщата нямаше никой, цялото село сякаш беше опустяло в ...

За хората и крушите

perperikon

Петък 13-и! Е, като не върви, не върви! Последен ден за довършване и предаване на онази толкова важн...

Иисуса

Plevel

Иисуса Посветено Момичето беше много особено. Появи се в средата на септември ’98-ма, с две дълги ка...